Page 17 - Test PDF v5
P. 17
« Back to Contents OVARIAN CANCER
LiFE re
Literature for ENYGO
Emerging molecular targeted therapies or early preclinical trials
in ovarian cancer
Relevant articles retrieved Nov 2015 - Feb 2016
No Title Authors Journal Link to abstract
Oncotarget.
1 CSIOVDB: a microarray gene expression database of epithelial ovarian Tan TZ et al. https://www.ncbi.nlm.nih.gov/pub-
cancer subtype. Clin Cancer Res. med/26549805
2 Genome-wide analysis identifies novel loci associated with ovarian Johnatty SE et al. https://www.ncbi.nlm.nih.gov/pub-
cancer outcomes: findings from the Ovarian Cancer Association med/26152742
Consortium.
3 A genome-scale screen reveals context-dependent ovarian cancer Shields BB et al. Mol Sys Biol. https://www.ncbi.nlm.nih.gov/pub-
sensitivity to miRNA overexpression. Gynecol Oncol. med/26655797
Mol Cancer.
4 Micro-RNAs associated with the evolution of ovarian cancer cisplatin Boac BM et al. Pharmacogenomics. https://www.ncbi.nlm.nih.gov/pub-
resistance. Tumour Biol.. med/26731723
Carcinogenesis.
5 miR-634 restores drug sensitivity in resistant ovarian cancer cells by van Jaarsveld MTM PLOS One. https://www.ncbi.nlm.nih.gov/pub-
med/26576679
targeting the Ras-MAPK pathway. et al.
https://www.ncbi.nlm.nih.gov/pub-
6 MicroRNA-509-3p increases the sensitivity of epithelial ovarian Chen W et al. med/26786897
cancer cells to cisplatin-induced apoptosis.
https://www.ncbi.nlm.nih.gov/pub-
7 Cross-reacting material 197 reverses the resistance to paclitaxel in Tang X et al. med/26572150
paclitaxel-resistant human ovarian cancer
https://www.ncbi.nlm.nih.gov/pub-
8 Restoration of paclitaxel resistance by CDK1 intervention in drug Bae T et al. med/26442525
resistant ovarian cancer.
https://www.ncbi.nlm.nih.gov/pub-
9 A Synthetic Lethality Screen Using a Focused siRNA Library to Identify Pathak HB et al. med/26637171
Sensitizers to Dasatinib Therapy for the Treatment of Epithelial
Ovarian Cancer.
10 A Designed Inhibitor of p53 Aggregation Rescues p53 Tumor Suppre- Soragni A et al. Cancer Cell. https://www.ncbi.nlm.nih.gov/pub-
ssion in Ovarian Carcinomas. Cancer Research. med/26748848
Oncogene.
11 Therapeutic Targeting of Tumour-Derived R-Spondin Attenuates β-Cate- Chartier C et al. Crit Rev Oncol Hematol. https://www.ncbi.nlm.nih.gov/pub-
nin Signaling and Tumorigenesis in Multiple Cancer Types. Cancer Cell Int. med/26719531
Sci Rep.
12 Therapeutic targeting of tetraspanin8 in epithelial ovarian cancer Park CS et al. Oncotarget. https://www.ncbi.nlm.nih.gov/pub-
invasion and metastasis. med/26804173
13 Jump in the fire — heat shock proteins and their impact on ovarian Stope MB et al. https://www.ncbi.nlm.nih.gov/pub-
cancer therapy. med/26318096
14 Potential target for ovarian clear cell carcinoma: a review of updates Matsuzaki S et al. https://www.ncbi.nlm.nih.gov/pub-
and future perspectives. med/26675567
15 Antibiotic monensin synergizes with EGFR inhibitors and oxaliplatin to Deng Y et al. https://www.ncbi.nlm.nih.gov/pub-
suppress the proliferation of human ovarian cancer cells. med/26639992
16 IL-27 induces the expression of IDO and PD-L1 in human cancer cells. Carbotti G et al. https://www.ncbi.nlm.nih.gov/pub-
med/26657115
International Journal of Gynecological Cancer, Volume 26, Supplement #1 Page 17